4.5 Article

Morphological quantification of hierarchical geomaterials by X-ray nano-CT bridges the gap from nano to micro length scales

期刊

AMERICAN MINERALOGIST
卷 97, 期 2-3, 页码 480-483

出版社

MINERALOGICAL SOC AMER
DOI: 10.2138/am.2012.3985

关键词

New technique; X-ray nanotomography; clay suspension; cement pastes

资金

  1. ANR
  2. CNRS-CPR, King Abdullah University of Science and Technology (KAUST) [KUS-11-004021]

向作者/读者索取更多资源

Morphological quantification of the complex structure of hierarchical geomaterials is of great relevance for Earth science and environmental engineering, among others. To date, methods that quantify the 3D morphology on length scales ranging from a few tens of nanometers to several hundred nanometers have had limited success. We demonstrate, for the first time, that it is possible to go beyond visualization and to extract quantitative morphological information from X-ray images in the aforementioned length scales. As examples, two different hierarchical geomaterials exhibiting complex porous structures ranging from nanometer to macroscopic scale are studied: a flocculated clay water suspension and two hydrated cement pastes. We show that from a single projection image it is possible to perform a direct computation of the ultra-small angle-scattering spectra. The predictions matched very well the experimental data obtained by the best ultra-small angle-scattering experimental setups as observed for the cement paste. In this context, we demonstrate that the structure of flocculated clay suspension exhibit two well-distinct regimes of aggregation, a dense mass fractal aggregation at short distance and a more open structure at large distance, which can be generated by a 3D reaction limited cluster-cluster aggregation process. For the first time, a high-resolution 3D image of fibrillar cement paste cluster was obtained from limited angle nanotomography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据