4.5 Article

Polymorphic variants of CYP2C9: Mechanisms involved in reduced catalytic activity

期刊

MOLECULAR PHARMACOLOGY
卷 72, 期 5, 页码 1280-1288

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.107.036178

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM069753-03, GM069753] Funding Source: Medline

向作者/读者索取更多资源

CYP2C9 catalyzes the demethylation of the biphasic kinetics substrate (S)-naproxen, and the CYP2C9*2 (R144C) and CYP2C9*3 (I359L) variants are associated with lower rates of (S)-naproxen demethylation. To assess the reasons for these reductions in catalytic activity of the two variants and potential substrate concentration-dependent differences in a biphasic kinetics substrate, cytochrome P450 (P450) cycle coupling and uncoupling were monitored during coincubation of (S)-naproxen and CYP2C9 over a range of P450 reductase concentrations. Coupling was greatest in the CYP2C9.1 enzyme, followed by CYP2C9.2, and then CYP2C9.3. Uncoupling in CYP2C9.1 and CYP2C9.3 was primarily to H2O2. In contrast, CYP2C9.2 uncoupled to excess water preferentially. The conversion of enzyme to the high spin state was similar in CYP2C9.1 and CYP2C9.2, but lower in CYP2C9.3. It is noteworthy that neither altered substrate binding nor altered interaction with reductase seemed to be involved in reduced catalysis. These results suggest that in addition to coupling differences, differential uncoupling to shunt products and differences in spin state help explain the reduced catalytic activity in these enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据