4.5 Article

A multiwave approximate Riemann solver for ideal MHD based on relaxation. I: theoretical framework

期刊

NUMERISCHE MATHEMATIK
卷 108, 期 1, 页码 7-42

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00211-007-0108-8

关键词

-

向作者/读者索取更多资源

We present a relaxation system for ideal magnetohydrodynamics (MHD) that is an extension of the Suliciu relaxation system for the Euler equations of gas dynamics. From it one can derive approximate Riemann solvers with three or seven waves, that generalize the HLLC solver for gas dynamics. Under some subcharacteristic conditions, the solvers satisfy discrete entropy inequalities, and preserve positivity of density and internal energy. The subcharacteristic conditions are nonlinear constraints on the relaxation parameters relating them to the initial states and the intermediate states of the approximate Riemann solver itself. The 7-wave version of the solver is able to resolve exactly all material and Alfven isolated contact discontinuities. Practical considerations and numerical results will be provided in another paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据