4.6 Article

Self-consistent slave rotor mean-field theory for strongly correlated systems

期刊

PHYSICAL REVIEW B
卷 76, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.195101

关键词

-

向作者/读者索取更多资源

Building on the work by Florens and Georges [Phys. Rev. B 70, 035114 (2004)], we formulate and study a self-consistent slave rotor mean-field theory for strongly correlated systems. This approach views the electron, in the strong correlation regime, as a composite of a neutral spinon and a charged rotor field. We solve the coupled spinon-rotor model self-consistently using a cluster mean-field theory for the rotors and various Ansatze for the spinon ground state. We illustrate this approach with a number of examples relevant to ongoing experiments in strongly correlated electronic systems such as (i) the phase diagram of the isotropic triangular lattice organic Mott insulators, (ii) quasiparticle excitations and tunneling asymmetry in the weakly doped cuprate superconductors, and (iii) the cyclotron mass of carriers in commensurate spin-density wave and U(1) staggered flux (or d-density wave) normal states of the underdoped cuprates. We compare the estimated cyclotron mass with results from recent quantum oscillation experiments on ortho-II YBa2Cu3O6.5 by Doiron-Leyraud [Nature (London) 447, 565 (2007)] which appear to find Fermi pockets in the magnetic field induced normal state. We comment on the relation of this normal ground state to Fermi arcs seen in photoemission experiments above T-c. This slave rotor mean-field theory can be generalized to study inhomogeneous states and strongly interacting models relevant to ultracold atoms in optical lattices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据