4.4 Article

Impact of alcaligin siderophore utilization on in vivo growth of Bordetella pertussis

期刊

INFECTION AND IMMUNITY
卷 75, 期 11, 页码 5305-5312

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.00849-07

关键词

-

资金

  1. NIAID NIH HHS [AI-31088, R01 AI031088, R21 AI031088] Funding Source: Medline

向作者/读者索取更多资源

Bordetella pertussis, the causative agent of human whooping cough, or pertussis, is an obligate human pathogen with diverse high-affinity transport systems for the assimilation of iron, a biometal that is essential for growth. Under iron starvation stress conditions, B. pertussis produces the siderophore alcaligin. The alcaligin siderophore gene cluster, consisting of the alcABCDERS and fauA genes, encodes activities required for alcaligin biosynthesis, the export of the siderophore from the cell, the uptake of the ferric alcaligin complex across the outer membrane, and the transcriptional activation of alcaligin system genes by an autogenous mechanism involving alcaligin sensing. The fauA gene encodes a 79-kDa TonB-dependent outer membrane receptor protein required for the uptake and utilization of ferric alcaligin as an iron source. In this study, using mixed-infection competition experiments in a mouse respiratory model, inactivation of the B. pertussis ferric alcaligin receptor protein was found to have a profound impact on in vivo growth and survival of a fauA mutant compared with a coinfecting wild-type strain. The attenuating effect of fauA inactivation was evident early in the course of the infection, suggesting that the contribution of ferric alcaligin transport to the ecological fitness of B. pertussis may be important for adaptation to iron-restricted host conditions that exist at the initial stages of infection. Alcaligin-mediated iron acquisition by B. pertussis may be critical for successful host colonization and establishment of infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据