4.3 Article

Expected value of sample information for Weibull survival data

期刊

HEALTH ECONOMICS
卷 16, 期 11, 页码 1205-1225

出版社

WILEY
DOI: 10.1002/hec.1217

关键词

value of information; sample size; clinical trial design; Weibull model; proportional hazards; cost-effectiveness

向作者/读者索取更多资源

Expected value of sample information (EVSI) involves simulating data collection, Bayesian updating, and re-examining decisions. Bayesian updating in Weibull models typically requires Markov chain Monte Carlo (MCMC). We examine five methods for calculating posterior expected net benefits: two heuristic methods (data lumping and pseudo-normal); two Bayesian approximation methods (Tierney & Kadane, Brennan & Kharroubi); and the gold standard MCMC. A case study computes EVSI for 25 study options. We compare accuracy, computation time and trade-offs of EVSI versus study costs. Brennan & Kharroubi (B&K) approximates expected net benefits to within +/- 1% of MCMC. Other methods, data lumping (+54%), pseudo-normal (-5%) and Tierney & Kadane (+11%) are less accurate. B&K also produces the most accurate EVSI approximation. Pseudo-normal is also reasonably accurate, whilst Tierney & Kadane consistently underestimates and data lumping exhibits large variance. B&K computation is 12 times faster than the MCMC method in our case study. Though not always faster, B&K provides most computational efficiency when net benefits require appreciable computation time and when many MCMC samples are needed. The methods enable EVSI computation for economic models with Weibull survival parameters. The approach can generalize to complex multi-state models and to survival analyses using other smooth parametric distributions. Copyright (C) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据