4.8 Article

Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0705257104

关键词

ionizing radiation; zygote; nonhomologous end joining; homologous recombination

资金

  1. NIEHS NIH HHS [ES 09117-03] Funding Source: Medline

向作者/读者索取更多资源

Male and female germ cells can transmit genetic defects that lead to pregnancy loss, infant mortality, birth defects, and genetic diseases in offspring; however, the parental origins of transmitted defects are not random, with de novo mutations and chromosomal structural aberrations transmitted predominantly by sperm. We tested the hypotheses that paternal mutagenic exposure during late spermatogenesis can induce damage that persists in the fertilizing sperm and that the risk of embryos with paternally transmitted chromosomal aberrations depends on the efficiency of maternal DNA repair during the first cycle after fertilization. We show that female mice with defective DNA double-strand break repair had significantly increased frequencies of zygotes with sperm-derived chromosomal aberrations after matings with wildtype males irradiated 7 days earlier with 4 Gy of ionizing radiation. These findings demonstrate that mutagenic exposures during late spermatogenesis can induce damage that persists for at least 7 days in the fertilizing sperm and that maternal genotype plays a major role in determining the risks for pregnancy loss and frequencies of offspring with chromosomal defects of paternal origin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据