4.7 Article

Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardiol performance in infrcted rat hearts

期刊

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
卷 50, 期 19, 页码 1884-1893

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jacc.2007.07.054

关键词

-

向作者/读者索取更多资源

Objectives We evaluated the ability of human embryonic stem cells (hESCs) and their cardiomyocyte derivatives (hESCCMs) to engraft and improve myocardial performance in the rat chronic infarction model. Background Cell therapy is emerging as a novel therapy for myocardial repair but is hampered by the lack of sources for human cardiomyocytes. Methods Immunosuppressed healthy and infarcted (7 to 10 days after coronary ligation) rat hearts were randomized to injection of undifferentiated hESCs, hESC-CMs, noncardiomyocyte hESC derivatives, or saline. Detailed histological analysis and sequential echocardiography were used to determine the structural and functional consequences of cell grafting. Results Transplantation of undifferentiated hESCs resulted in the formation of teratoma-like structures. This phenomenon was prevented by grafting of ex vivo pre-differentiated hESC-CMs. The grafted cardiomyocytes survived, proliferated, matured, aligned, and formed gap junctions with host cardiac tissue. Functionally, animals injected with saline or nonmyocyte hESC derivatives demonstrated significant left ventricular (LV) dilatation and functional deterioration, whereas grafting of hESC-CMs attenuated this remodeling process. Hence, post-injury baseline fractional shortening deteriorated by 50% (from 20 +/- 2% to 10 +/- 2%) and by 30% (20 +/- 2% to 14 +/- 2%) in the saline and nonmyocyte groups while improving by 22% (21 +/- 2% to 25 +/- 3%) in the hESC-CM group. Similarly, wall motion score index and LV diastolic dimensions were significantly lower in the hESC-CM animals. Conclusions Transplantation of hESC-CMs after extensive myocardial infarction in rats results in the formation of stable cardiomyocyte grafts, attenuation of the remodeling process, and functional benefit. These findings highlight the potential of hESCs for myocardial cell therapy strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据