4.6 Article

Thermal Disruption of Mushroom Body Development and Odor Learning in Drosophila

期刊

PLOS ONE
卷 2, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0001125

关键词

-

资金

  1. National Science Foundation [0213921]
  2. National Center for Research Resources, a component of the National Institutes of Health [2 P20 RR016464]
  3. Division Of Integrative Organismal Systems
  4. Direct For Biological Sciences [0213921] Funding Source: National Science Foundation

向作者/读者索取更多资源

Environmental stress (nutritive, chemical, electromagnetic and thermal) has been shown to disrupt central nervous system (CNS) development in every model system studied to date. However, empirical linkages between stress, specific targets in the brain, and consequences for behavior have rarely been established. The present study experimentally demonstrates one such linkage by examining the effects of ecologically-relevant thermal stress on development of the Drosophila melanogaster mushroom body (MB), a conserved sensory integration and associative center in the insect brain. We show that a daily hyperthermic episode throughout larval and pupal development (1) severely disrupts MB anatomy by reducing intrinsic Kenyon cell (KC) neuron numbers but has little effect on other brain structures or general anatomy, and (2) greatly impairs associative odor learning in adults, despite having little effect on memory or sensory acuity. Hence, heat stress of ecologically relevant duration and intensity can impair brain development and learning potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据