4.7 Article

Estimating kinetic rates from accelerated molecular dynamics simulations: Alanine dipeptide in explicit solvent as a case study

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 127, 期 17, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2794763

关键词

-

向作者/读者索取更多资源

Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling methods have been proposed to address this issue, including the accelerated molecular dynamics method. In this work, we study the extent of sampling of the phi/psi space of alanine dipeptide in explicit water using accelerated molecular dynamics and present a framework to recover the correct kinetic rate constant for the helix to beta-strand transition. We show that the accelerated MD can drastically enhance the sampling of the phi/psi conformational phase space when compared to normal MD. In addition, the free energy density plots of the phi/psi space show that all minima regions are accurately sampled and the canonical distribution is recovered. Moreover, the kinetic rate constant for the helix to beta-strand transition is accurately estimated from these simulations by relating the diffusion coefficient to the local energetic roughness of the energy landscape. Surprisingly, even for such a low barrier transition, it is difficult to obtain enough transitions to accurately estimate the rate constant when one uses normal MD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据