4.6 Article

Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 45, 页码 32811-32820

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703342200

关键词

-

资金

  1. NCI NIH HHS [CA 86344] Funding Source: Medline
  2. NHLBI NIH HHS [HL 24066] Funding Source: Medline

向作者/读者索取更多资源

Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both plasminogen fragments induce Ca2+ signaling cascades; however, kringle 5 acts through voltage-dependent anion channel and microplasminogen does so via the glucose-regulated protein 78. Because trafficking of voltage-dependent anion channel to the cell surface is associated with heat shock proteins, we investigated a possible association between voltage-dependent anion channel and glucose-regulated protein 78 on the surface of 1-LN human prostate tumor cells. We demonstrate that these proteins co-localize, and changes in the expression of the glucose-regulated protein 78 affect the expression of voltage-dependent anion channel. To differentiate the functions of these receptor proteins, either when acting singly or as a complex, we employed human hexokinase I as a specific ligand for voltage-dependent anion channel, in addition to kringle 5. We show that kringle 5 inhibits 1-LN cell proliferation and promotes caspase-7 activity by a mechanism that requires binding to cell surface voltage-dependent anion channel and is inhibited by human hexokinase I.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据