4.7 Article

Long-term plasticity of the spinal locomotor circuitry mediated by endocannabinoid and nitric oxide signaling

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 46, 页码 12664-12674

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3174-07.2007

关键词

locomotion; spinal cord; modulation; mGluRs; lamprey; endocannabinoids; plasticity

向作者/读者索取更多资源

Retrograde signaling by endocannabinoids is known to induce short- and long-term synaptic plasticity, but the significance of this modulation for the activity of neural networks underlying motor behavior is largely unclear. Here, we used the isolated lamprey spinal cord to show that endocannabinoids released by activation of metabotropic glutamate receptor 1 (mGluR1) induce long-term synaptic plasticity during an ongoing locomotor rhythm and how this is translated onto the integrated activity of the spinal circuitry. A brief activation of mGluR1 induces a long-term increase in the locomotor frequency that is mediated by a concomitant long-term depression of midcycle reciprocal inhibition and long-term potentiation of ipsilateral synaptic excitation arising from locomotor circuit interneurons. Blockade of cannabinoid receptors with AM251 prevented the mGluR1-mediated long-term plasticity of both inhibitory and excitatory synaptic transmission, as well as that of the locomotor activity. Similarly, inhibition of nitric oxide signaling blocked the mGluR1-mediated long-term plasticity. These results show that the locomotor circuitry is endowed with a memory capacity mediated by a long-term shift in the balance between synaptic inhibition and excitation. This is triggered by activation of mGluR1 and requires subsequent endocannabinoid and nitric oxide signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据