4.8 Article

Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size

期刊

CELL
卷 131, 期 4, 页码 784-795

出版社

CELL PRESS
DOI: 10.1016/j.cell.2007.09.045

关键词

-

资金

  1. NCRR NIH HHS [RR-08630] Funding Source: Medline
  2. NIAMS NIH HHS [R01AR049033.03] Funding Source: Medline

向作者/读者索取更多资源

Skeletal muscle can bear a high load at constant length, or shorten rapidly when the load is low. This force-velocity relationship is the primary determinant of muscle performance in vivo. Here we exploited the quasi-crystalline order of myosin II motors in muscle filaments to determine the molecular basis of this relationship by X-ray interference and mechanical measurements on intact single cells. We found that, during muscle shortening at a wide range of velocities, individual myosin motors maintain a force of about 6 pN while pulling an actin filament through a 6 nm stroke, then quickly detach when the motor reaches a critical conformation. Thus we show that the force-velocity relationship is primarily a result of a reduction in the number of motors attached to actin in each filament in proportion to the filament load. These results explain muscle performance and efficiency in terms of the molecular mechanism of the myosin motor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据