4.8 Article

Circadian rhythms of superhelical status of DNA in cyanobacteria

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0706069104

关键词

DNA topology; gene expression; supercoiling; biological clock

资金

  1. NIGMS NIH HHS [R01 GM067152, R37 GM067152] Funding Source: Medline

向作者/读者索取更多资源

The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates that global rhythms of transcription are based on rhythmic changes in the status of the cyanobacterial chromosome that are ultimately controlled by the KaiABC oscillator. By using a nonessential, cryptic plasmid (pANS) as a reporter of the superhelical state of DNA in cyanobacteria, we show that the supercoiling status of this plasmid changes in a circadian manner in vivo. The rhythm of topological change in the plasmid is conditional; this change is rhythmic in constant light and in light/dark cycles, but not in constant darkness. In further support of the oscilloid model, cyanobacterial promoters that are removed from their native chromosomal locations and placed on a plasmid preserve their circadian expression patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据