4.8 Article

A self-consistent theory for graphene transport

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0704772104

关键词

Boltzmann transport; electron transport; minimum conductivity

向作者/读者索取更多资源

We demonstrate theoretically that most of the observed transport properties of graphene sheets at zero magnetic field can be explained by scattering from charged impurities. We find that, contrary to common perception, these properties are not universal but depend on the concentration of charged impurities nimp. For dirty samples (250 x 10(10) cm(-2) < n(imp) < 400 x 10(10) cm(-2)), the value of the minimum conductivity at low carrier density is indeed 4e(2)/h in agreement with early experiments, with weak dependence on impurity concentration. For cleaner samples, we predict that the minimum conductivity depends strongly on n(imp), increasing to 8e(2)/h for n(imp) approximate to 20 x 10(10) cm(-2). A clear strategy to improve graphene mobility is to eliminate charged impurities or use a substrate with a larger dielectric constant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据