4.5 Article

Thermal conductivity of methane hydrate from experiment and molecular simulation

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 46, 页码 13194-13205

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp074419o

关键词

-

向作者/读者索取更多资源

A single-sided transient plane source technique has been used to determine the thermal conductivity and thermal diffusivity of a compacted methane hydrate sample over the temperature range of 261.5-277.4 K and at gas-phase pressures ranging from 3.8 to 14.2 MPa. The average thermal conductivity, 0.68 +/- 0.01 W/(m center dot K), and thermal diffusivity, 2.04 x 10(-7) 0.04 x 10(-7) m(2)/s, values are, respectively, higher and lower than previously reported values. Equilibrium molecular dynamics (MD) simulations of methane hydrate have also been performed in the NPT ensemble to estimate the thermal conductivity for methane compositions ranging from 80 to 100% of the maximum theoretical occupation, at 276 K and at pressures ranging from 0.1 to 100 MPa. Calculations were performed with three rigid potential models for water, namely, SPC/E, TIP4P-Ew, and TIP4P-FQ, the last of which includes the effects of polarizability. The thermal conductivities predicted from MD simulations were in reasonable agreement with experimental results, ranging from about 0.52 to 0.77.W/(m center dot K) for the different potential models with the polarizable water model giving the best agreement with experiments. The MD simulation method was validated by comparing calculated and experimental thermal conductivity values for ice and liquid water. The simulations were in reasonable agreement with experimental data. The simulations predict a slight increase in the thermal conductivity with decreasing methane occupation of the hydrate cages. The thermal conductivity was found to be essentially independent of pressure in both simulations and experiments. Our experimental and simulation thermal conductivity results provide data to help predict gas hydrate stability in sediments for the purposes of production or estimating methane release into the environment due to gradual warming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据