4.8 Article

Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry

期刊

NATURE
卷 450, 期 7169, 页码 537-U9

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature06316

关键词

-

资金

  1. Natural Environment Research Council [ceh010023, NE/D005973/1, NE/E011837/1, NE/D00599X/1] Funding Source: researchfish
  2. NERC [NE/D005973/1, NE/D00599X/1, NE/E011837/1] Funding Source: UKRI

向作者/读者索取更多资源

Several hypotheses have been proposed to explain recent, widespread increases in concentrations of dissolved organic carbon (DOC) in the surface waters of glaciated landscapes across eastern North America and northern and central Europe(1-3). Some invoke anthropogenic forcing through mechanisms related to climate change(3-5), nitrogen deposition(6) or changes in land use(7), and by implication suggest that current concentrations and fluxes are without precedent. All of these hypotheses imply that DOC levels will continue to rise, with unpredictable consequences for the global carbon cycle. Alternatively, it has been proposed that DOC concentrations are returning toward pre-industrial levels as a result of a gradual decline in the sulphate content of atmospheric deposition(8-10). Here we show, through the assessment of time series data from 522 remote lakes and streams in North America and northern Europe, that rising trends in DOC between 1990 and 2004 can be concisely explained by a simple model based solely on changes in deposition chemistry and catchment acid-sensitivity. We demonstrate that DOC concentrations have increased in proportion to the rates at which atmospherically deposited anthropogenic sulphur and sea salt have declined. We conclude that acid deposition to these ecosystems has been partially buffered by changes in organic acidity and that the rise in DOC is integral to recovery from acidification. Over recent decades, deposition-driven increases in organic matter solubility may have increased the export of DOC to the oceans, a potentially important component of regional carbon balances(11). The increase in DOC concentrations in these regions appears unrelated to other climatic factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据