4.6 Article

Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin β-subunits

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 47, 页码 34093-34103

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703038200

关键词

-

向作者/读者索取更多资源

Genes all5292 (cpcS2) and alr0617 (cpcS1) in the cyanobacterium Nostoc PCC7120 are homologous to the biliprotein lyase cpcS, and genes all5339 (cpcT1) and alr0647 (cpcT2) are homologous to the lyase cpcT. The functions of the encoded proteins were screened in vitro and in a heterologous Escherichia coli system with plasmids conferring biosynthesis of the phycocyanobilin chromophore and of the acceptor proteins beta-phycoerythrocyanin (PecB) or beta-phycocyanin (CpcB). CpcT1 is a regioselective biliprotein lyase attaching phycocyanobilin exclusively to cysteine beta 155 but does not discriminate between CpcB and PecB. The in vitro reconstitutions required no cofactors, and kinetic constants were determined for CpcT1 under in vitro conditions. No lyase activity was found for the lyase homologues CpcS2 and CpcT2, but complexes are formed in vitro between CpcT1 and CpcS1, CpcT2, or PecE (subunit of phycoviolobilin: alpha-phycoerythrocyanin isomerase lyase). The genes coding the inactive homologues, cpcS2 and cpcT2, are transcribed in N-starved Nostoc. In sequential binding experiments with CpcT1 and CpcS1, a chromophore at cysteine 84 inhibited the subsequent attachment to cysteine 155, whereas the inverse sequence generates subunits carrying both chromophores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据