4.6 Article

The role of thrombin exosites I and II in the activation of human coagulation factor V

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 47, 页码 33915-33924

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M701123200

关键词

-

资金

  1. NHLBI NIH HHS [HL 038779, R01 HL038779-21, R01 HL038779] Funding Source: Medline

向作者/读者索取更多资源

Human blood coagulation Factor V(FV) is a plasma protein with little procoagulant activity. Limited proteolysis at Arg(709), Arg(1018), and Arg(1545) by thrombin or Factor Xa (FXa) results in the generation of activated FV, which serves as a cofactor of FXa in prothrombin activation. Both thrombin exosites I and II have been reported to be involved in FV activation, but the relative importance of these regions in the individual cleavages remains unclear. To investigate the role of each exosite in FV activation, we have used recombinant FV molecules with only one of the three activation cleavage sites available, in combination with exosite I- or II-specific aptamers. In addition, structural requirements for exosite interactions located in the B-domain of FV were probed using FV B-domain deletion mutants and comparison with FV activating enzymes from the venom of Russell's viper(RVV-V) and of Levant's viper (LVV-V) known to activate FV by specific cleavage at Arg(1545). Our results indicate that thrombin exosite II is not involved in cleavage at Arg(709) and that both thrombin exosites are important for recognition and cleavage at Arg(1545). Efficient thrombin- catalyzed FV activation requires both the N- and C-terminal regions of the B-domain, whereas only the latter is required by RVV-V and LVV-V. This indicates that proteolysis of FV by thrombin at Arg(709), Arg(1018), and Arg(1545) show different cleavage requirements with respect to interactions mediated by thrombin exosites and areas that surround the respective cleavage sites. In addition, interactions between exosite I of thrombin and FV are primarily responsible for the different cleavage site specificity as compared with activation by RVV-V or LVV-V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据