4.5 Article

Host-guest chemistry and light driven molecular lock of Ru(bpy)3-viologen with cucurbit[7-8]urils

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 47, 页码 13357-13363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp074582j

关键词

-

向作者/读者索取更多资源

Host-guest chemistry and photoinduced electron-transfer processes have been studied in the systems containing Ru(bPy)(3) complex covalently linked to viologen as a guest molecule and cucurbit[n]urils (n = 7, 8) as host molecules in aqueous solution. The Ru(bpy)(3)-viologen complex,[Ru(2,2 '-bipyridine)(2)(4-(4-(1 '-methyl-4,4 '-bipyridinediium-1-yl)butyl)-4 '-methyl-2,2 '-bipyridine)]Cl-4(denoted as RU2+-MV2+, 1) was shown to form stable 1:1 inclusion complexes with cucurbit[7]uril (CB[7]) and cucurbit[8] uril (CB[8]). The binding modes are slightly different with CB[7] and CB[8]. CB[7] preferentially binds to part of the viologen residue in 1 together with the butyl chain, whereas CB[8] preferentially encloses the whole viologen residue. Photoinduced intramolecular electron transfer from the excited-state of the Ru moiety to MV2+ which is inserted into the cavity of the CBs occurred. Long-lived charge-separated states RU3+-MV+center dot, were generated with the lifetimes of 280 ns with CB[7] and 2060 ns with CB[8]. This shows that CBs can slow down the charge recombination within supramolecular systems, and the difference in lifetimes seems to be due to the difference in binding modes. In the presence of a sacrificial electron donor triethanolarnine, light-driven formation of a dimer of MV+center dot inside the CB[8] cavity was observed. This locked molecular dimer can be unlocked by molecular oxygen to give back the original form of the molecular dyad 1 with the MV2+ moiety inserted in the cavity of CB[8]. The processes could be repeated several times and showed nice reversibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据