4.7 Article

Effects of algal-produced neurotoxins on metabolic activity in telencephalon, optic tectum and cerebellum of Atlantic salmon (Salmo salar)

期刊

AQUATIC TOXICOLOGY
卷 85, 期 2, 页码 96-103

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquatox.2007.08.003

关键词

saxitoxin; brevetoxin; domoic acid; deoxyglucose; autoradiography; CNS; metabolic activity; fish

向作者/读者索取更多资源

Neurotoxins from algal blooms have been reported to cause mortality in a variety of species, including sea birds, sea mammals and fish. Farmed fish cannot escape harmful algal blooms and their potential toxins, thus they are more vulnerable for exposure than wild stocks. Sublethal doses of the toxins are likely to affect fish behaviour and may impair cognitive abilities. In the present study, changes in the metabolic activity in different parts of the Atlantic salmon (Salmo salar) brain involved in central integration and cognition were investigated after exposure to sublethal doses of three algal-produced neurotoxins; saxitoxin (STX), brevetoxin (BTX) and domoic acid (DA). Fish were randomly selected to four groups for i.p. injection of saline (control) or one of the neurotoxins STX (10 mu g STX/kg bw), BTX (68 mu g BTX/kg bw) or DA (6 mg DA/kg bw). In addition, C-14-2-deoxyglucose was i.m. injected to measure brain metabolic activity by autoradiography. The three regions investigated were telencephalon (Tel), optic tectum (OT) and cerebellum (Ce). There were no differences in the metabolic activity after STX and BTX exposure compared to the control in these regions. However, a clear increase was observed after DA exposure. When the subregions with the highest metabolic rate were pseudocoloured in the three brain regions, the three toxins caused distinct differences in the respective patterns of metabolic activation. Fish exposed to STX displayed similar patterns as the control fish, whereas fish exposed to BTX and DA showed highest metabolic activity in subregions different from the control group. All three neurotoxins affected subregions that are believed to be involved in cognitive abilities in fish. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据