4.6 Article

Correlated behavior of conductance and phase rigidity in the transition from the weak-coupling to the strong-coupling regime

期刊

PHYSICAL REVIEW B
卷 76, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.214302

关键词

-

向作者/读者索取更多资源

We study the transmission through different small systems as a function of the coupling strength v to the two attached leads. The leads are identical with only one propagating mode xi(E)(C) in each of them. In addition to the conductance G, we calculate the phase rigidity rho of the scattering wave function Psi(E)(C) in the interior of the system. Most interesting results are obtained in the regime of strongly overlapping resonance states where the crossover from staying to traveling modes takes place. The crossover is characterized by collective effects. Here, the conductance is plateaulike enhanced in some energy regions of finite length while corridors with zero transmission (total reflection) appear in other energy regions. This transmission picture depends only weakly on the spectrum of the closed system. It is caused by the alignment of some resonance states of the system with the propagating modes xi(E)(C) in the leads. The alignment of resonance states takes place stepwise by resonance trapping, i.e., it is accompanied by the decoupling of other resonance states from the continuum of propagating modes. This process is quantitatively described by the phase rigidity rho of the scattering wave function. Averaged over energy in the considered energy window, < G > is correlated with 1-. In the regime of strong coupling, only two short-lived resonance states survive each aligned with one of the channel wave functions xi(E)(C). They may be identified with traveling modes through the system. The remaining M-2 trapped narrow resonance states are well separated from one another.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据