4.7 Review

Field-theoretical formulations of MOND-like gravity

期刊

PHYSICAL REVIEW D
卷 76, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.76.124012

关键词

-

向作者/读者索取更多资源

Modified Newtonian dynamics (MOND) is a possible way to explain the flat galaxy rotation curves without invoking the existence of dark matter. It is, however, quite difficult to predict such a phenomenology in a consistent field theory, free of instabilities and admitting a well-posed Cauchy problem. We examine critically various proposals of the literature, and underline their successes and failures both from the experimental and the field-theoretical viewpoints. We exhibit new difficulties in both cases, and point out the hidden fine-tuning of some models. On the other hand, we show that several published no-go theorems are based on hypotheses which may be unnecessary, so that the space of possible models is a priori larger. We examine a new route to reproduce the MOND physics, in which the field equations are particularly simple outside matter. However, the analysis of the field equations within matter (a crucial point which is often forgotten in the literature) exhibits a deadly problem, namely, that they do not remain always hyperbolic. Incidentally, we prove that the same theoretical framework provides a stable and well-posed model able to reproduce the Pioneer anomaly without spoiling any of the precision tests of general relativity. Our conclusion is that all MOND-like models proposed in the literature, including the new ones examined in this paper, present serious difficulties: Not only they are unnaturally fine-tuned, but they also fail to reproduce some experimental facts or are unstable or inconsistent as field theories. However, some frameworks, notably the tensor-vector-scalar one of Bekenstein and Sanders, seem more promising than others, and our discussion underlines in which directions one should try to improve them.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据