4.8 Article

ATP-sensitive potassium channels mediate survival during infection in mammals and insects

期刊

NATURE GENETICS
卷 39, 期 12, 页码 1453-1460

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ng.2007.25

关键词

-

资金

  1. NIAID NIH HHS [AI070167] Funding Source: Medline

向作者/读者索取更多资源

Specific homeostatic mechanisms confer stability in innate immune responses, preventing injury or death from infection. Here we identify, from a screen of N-ethyl-N-nitrosourea-mutagenized mice, a mutation causing both profound susceptibility to infection by mouse cytomegalovirus and similar to 20,000-fold sensitization to lipopolysaccharide ( LPS), poly( I. C) and immunostimulatory ( CpG) DNA. The LPS hypersensitivity phenotype is not suppressed by mutations in Myd88, Trif, Tnf, Tnfrsf1a, Ifnb, Ifng or Stat1, genes contributing to LPS responses, and results from an abnormality extrinsic to hematopoietic cells. The phenotype is due to a null allele of Kcnj8, encoding Kir6.1, a protein that combines with SUR2 to form an ATP-sensitive potassium channel ( KATP) expressed in coronary artery smooth muscle and endothelial cells. In Drosophila melanogaster, suppression of dSUR by RNA interference similarly causes hypersensitivity to infection by flock house virus. Thus, KATP evolved to serve a homeostatic function during infection, and in mammals it prevents coronary artery vasoconstriction induced by cytokines dependent on TLR and/ or MDA5 immunoreceptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据