4.5 Article

Heterogeneity of V2-derived interneurons in the adult mouse spinal cord

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 26, 期 11, 页码 3003-3015

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1460-9568.2007.05907.x

关键词

central pattern generators; interneurons; locomotion; motoneurons; propriospinal

资金

  1. CIHR [79413] Funding Source: Medline

向作者/读者索取更多资源

Spinal neurons and networks that generate rhythmic locomotor activity remain incompletely defined, prompting the use of molecular biological strategies to label populations of neurons in the postnatal mouse. During spinal cord development, expression of Lhx3 in the absence of Isl1 specifies a V2 interneuronal fate. In this study, postnatal V2-derived interneurons were identified by yellow fluorescent protein (YFP) expression in the double-transgenic offspring of Lhx3(Cre/+) x thy1-loxP-stop-loxP-YFP mice. While some motoneurons were labelled, several populations of interneurons predominantly located in lamina VII could also be distinguished. Small interneurons were located throughout the spinal cord whereas larger interneurons were concentrated in the lumbar enlargement. Some V2-derived interneurons were propriospinal, with axons that bifurcated in the lateral funiculus. V2-derived interneurons gave rise to populations of both excitatory and inhibitory interneurons in approximately equal proportions, as demonstrated by in situ hybridization with VGLUT2 mRNA. Immunohistochemical studies revealed YFP+ boutons throughout the spinal cord. Both glutamatergic and glycinergic YFP+ boutons were observed in lamina IX where many apposed motoneuron somata. GABAergic YFP+ boutons were also observed in lamina IX, and they did not form P-boutons. At P0, more than half of the YFP+ interneurons expressed Chx10 and thus were derived from the V2a subclass. In adult mice, there was an increase in Fos expression in V2-derived interneurons following locomotion, indicating that these neurons are active during this behaviour. The heterogeneity of V2-derived interneurons in adult mice indicates that physiologically distinct subpopulations, including last-order interneurons, arise from these embryonically defined neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据