4.1 Article

Mitochondria as determinant of nucleotide pools and chromosomal stability

出版社

ELSEVIER
DOI: 10.1016/j.mrfmmm.2007.06.002

关键词

mitochondrial disease; cancer; chromosomal instability; DNA repair; dNTP levels

资金

  1. NCI NIH HHS [R01 CA121904, CA113655, CA 16056] Funding Source: Medline

向作者/读者索取更多资源

Mitochondrial function plays an important role in multiple human diseases and mutations in the mitochondrial genome have been detected in nearly every type of cancer investigated to date. However, the mechanism underlying the interrelation is unknown. We used human cell lines depleted of mitochondrial DNA as models and analyzed the outcome of mitochondrial dysfunction on major cellular repair activities. We show that the deoxyribonucleoside triphosphate (dNTP) pools are affected, most prominently we detect a 3-fold reduction of the dTTP pool when normalized to the number of cells in S-phase. It is known that imbalanced dNTP pools are mutagenic and in accordance, we show that mitochondrial dysfunction results in chromosomal instability, which can explain its role in tumor development. We did not find any straightforward correlation between ATP levels and dNTP pools in cells with defective mitochondrial activity. Our results suggest that mitochondria are central players in maintaining genomic stability and in controlling essential nuclear processes such as upholding a balanced supply of nucleotides. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据