4.7 Article

Mechanisms underlying intranuclear rod formation

期刊

BRAIN
卷 130, 期 -, 页码 3275-3284

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awm247

关键词

intranuclear rod myopathy; nuclear aggregates; alpha-skeletal actin; alpha-actinin

向作者/读者索取更多资源

Specific mutations within the -skeletal actin gene (ACTA1) result in intranuclear rod myopathy (IRM), characterized by rod-like aggregates containing actin and -actinin-2 inside the nucleus of muscle cells. The mechanism leading to formation of intranuclear aggregates containing sarcomeric proteins and their impact on cell function and contribution to disease pathogenesis is unknown. In this study, we transfected muscle and non-muscle cells with mutants of -skeletal actin (Val163Leu, Val163Met) associated with intranuclear rod myopathy. By live-cell imaging we demonstrate that nuclear aggregates of actin form within the nuclear compartment, rather than entering the nucleus after formation in the cytoplasm, and are highly motile and dynamic structures. Thus, the nuclear environment supports the polymerization of actin and the movement and coalescence of the polymerized actin into larger structures. We show that the organization of actin within these aggregates is influenced by the binding of -actinin, and that -actinin is normally present in the nucleus of muscle and non-muscle cells. Furthermore, we demonstrate that, under conditions of cell stress (cytoskeletal disruption and ATP depletion), WT skeletal actin forms aggregates within the nucleus that are similar in morphology to those formed by the mutant actin, suggesting a common pathogenic mechanism for aggregate formation. Finally, we show that the presence of intranuclear actin aggregates significantly decreases the mitotic index and hence impacts on the function of the cell. Intranuclear aggregates thus likely contribute to the pathogenesis of muscle weakness in intranuclear rod myopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据