4.6 Article

Thermo-mechanical behavior of epoxy shape memory polymer foams

期刊

SMART MATERIALS AND STRUCTURES
卷 16, 期 6, 页码 2330-2340

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/16/6/037

关键词

-

向作者/读者索取更多资源

Shape memory polymer foams have significant potential in biomedical and aerospace applications, but their thermo-mechanical behavior under relevant deformation conditions is not well understood. In this paper we examine the thermo-mechanical behavior of epoxy shape memory polymer foams with an average relative density of nearly 20%. These foams are deformed under conditions of varying stress, strain, and temperature. The glass transition temperature of the foam was measured to be approximately 90 degrees C and compression and tensile tests were performed at temperatures ranging from 25 to 125 degrees C. Various shape recovery tests were used to measure recovery properties under different thermo-mechanical conditions. Tensile strain to failure was measured as a function of temperature to probe the maximum recovery limits of the foam in both temperature and strain space. Compression tests were performed to examine compressibility of the material as a function of temperature;. these foams can be compacted as much as 80% and still experience full strain recovery over multiple cycles. Furthermore, both tensile strain to failure tests and cyclic compression recovery tests revealed that deforming at a temperature of 80 degrees C maximizes macroscopic strain recovery. Deformation temperatures above or below this optimal value lead to lower failure strains in tension and the accumulation of non-recoverable strains in cyclic compression. Micro-computed tomography (micro-CT) scans of the foam at various compressed states were used to understand foam deformation mechanisms. The micro-CT studies revealed the bending, buckling, and collapse of cells with increasing compression, consistent with results from published numerical simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据