4.8 Article

Thermodynamics of DNA target site recognition by homing endonucleases

期刊

NUCLEIC ACIDS RESEARCH
卷 35, 期 21, 页码 7209-7221

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkm867

关键词

-

向作者/读者索取更多资源

The thermodynamic profiles of target site recognition have been surveyed for homing endonucleases from various structural families. Similar to DNA-binding proteins that recognize shorter target sites, homing endonucleases display a narrow range of binding free energies and affinities, mediated by structural interactions that balance the magnitude of enthalpic and entropic forces. While the balance of Delta H and T Delta S are not strongly correlated with the overall extent of DNA bending, unfavorable Delta H-binding is associated with unstacking of individual base steps in the target site. The effects of deleterious basepair substitutions in the optimal target sites of two LAGLIDADG homing endonucleases, and the subsequent effect of redesigning one of those endonucleases to accommodate that DNA sequence change, were also measured. The substitution of base-specific hydrogen bonds in a wild-type endonuclease/DNA complex with hydrophobic van der Waals contacts in a redesigned complex reduced the ability to discriminate between sites, due to nonspecific Delta S-binding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据