4.6 Article

Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice

期刊

PHYSICAL REVIEW B
卷 76, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.220508

关键词

-

向作者/读者索取更多资源

We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low-density regime, the system phase separates into a well-defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasicondensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据