4.6 Article

Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum

期刊

出版社

SPRINGER
DOI: 10.1007/s00339-007-4211-6

关键词

-

向作者/读者索取更多资源

We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, approximate to 300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F < 0.5 J/cm(2)) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of approximate to 10(4) m/s for the atomic state and approximate to 10(2) m/s for the condensed state. At larger fluences (F > 0.5 J/cm(2)), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据