4.5 Review

Anatomical basis of lingual hydrostatic deformation

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 210, 期 23, 页码 4069-4082

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.007096

关键词

magnetic resonance imaging; myoarchitecture; tissue mechanics

类别

资金

  1. NIDCD NIH HHS [R01-DC05604] Funding Source: Medline
  2. NIMH NIH HHS [R01-MH64044] Funding Source: Medline

向作者/读者索取更多资源

The mammalian tongue is believed to fall into a class of organs known as muscular hydrostats, organs for which muscle contraction both generates and provides the skeletal support for motion. We propose that the myoarchitecture of the tongue, consisting of intricate arrays of muscular fibers, forms the structural basis for hydrostatic deformation. Owing to the fact that maximal diffusion of the ubiquitous water molecule occurs orthogonal to the short axis of most fiber-type cells, diffusion-weighted magnetic resonance imaging (MRI) measurements can be used to derive information regarding 3-D fiber orientation in situ. Image data obtained in this manner suggest that the tongue consists of a complex juxtaposition of muscle fibers oriented in orthogonal arrays, which provide the basis for multidirectional contraction and isovolemic deformation. From a mechanical perspective, the lingual tissue may be considered as set of continuous coupled units of compression and expansion from which 3-D strain maps may be derived. Such functional data demonstrate that during physiological movements, such as protrusion, bending and swallowing, hydrostatic deformation occurs via synergistic contractions of orthogonally aligned intrinsic and extrinsic fibers. Lingual deformation can thus be represented in terms of models demonstrating that synergistic contraction of fibers at orthogonal or near-orthogonal directions to each other is a necessary condition for volume-conserving deformation. Evidence is provided in support of the supposition that hydrostatic deformation is based on the contraction of orthogonally aligned intramural fibers functioning as a mechanical continuum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据