4.7 Article

Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization

期刊

PLANT AND SOIL
卷 301, 期 1-2, 页码 289-301

出版社

SPRINGER
DOI: 10.1007/s11104-007-9448-5

关键词

decomposition; residue; C mineralization; N mineralization; N limitation; heterogeneity; dynamic model

向作者/读者索取更多资源

Predicting the C and N mineralization of straw added to soil is important for forecasting subsequent soil N availability during and between crop growth cycles. The decomposition module of the STICS model, parameterized under optimal conditions, was used to predict straw decomposition in sub-optimal conditions, i.e. when contact between soil and residue was poor (due to large size residues or surface placement) or when mineral N availability was restricted. The data used in the simulations were obtained from published studies of effects of residue size, location and N availability on C and N mineralization from straw under controlled laboratory conditions. We selected studies in which the dynamics of C and N mineralization were measured simultaneously. The dynamics of straw mineralization could be well predicted by the model under optimal conditions with standard parameter values as derived from measured C/N ratios of the residues, but not under sub-optimal conditions which required a new parameterization. A good fit could be obtained on these treatments by a marked reduction in the rate constants of residue and microbial biomass decomposition and a marked increase in the microbial biomass C/N ratio. Our results show the need to include in decomposition models routines for simulating effects of spatial heterogeneity of residue distribution, different particle sizes and limiting N availability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据