4.5 Article

Two-dimensional separation of human plasma proteins using iterative free-flow electrophoresis

期刊

PROTEOMICS
卷 7, 期 23, 页码 4218-4227

出版社

WILEY-BLACKWELL
DOI: 10.1002/pmic.200700166

关键词

albumin; free-flow electrophoresis (FFE); human plasma; isoelectric focusing (IEF); peptide separation; prefractionation

向作者/读者索取更多资源

Blood plasma is the most complex human-derived proteome, containing other tissue proteomes as subsets. This proteome has only been partially characterized due to the extremely wide dynamic range of the plasma proteins of more than ten orders of magnitude. Thus, the reduction in sample complexity prior to mass spectrometric analysis is particularly important and alternative separation methodologies are required to more effectively mine the lower abundant plasma proteins. Here, we demonstrated a novel separation approach using 2-D free-flow electrophoresis (FFE) separating proteins and peptides in solution according to their pI prior to LC-MS/MS. We used the combination of sequential protein and peptide separation by first separating the plasma proteins into specific FFE fractions. Tryptic digests of the separated proteins were generated and subsequently separated using FFE. The protein separation medium was optimized to segregate albumin into specific fractions containing only few other proteins. An optimization of throughput for the protein separation reduced the separation time of 1 mL of plasma to approximately 3 h providing sufficient material for digestion and the subsequent peptide separation. Our approach revealed low-abundant proteins (e.g., L-selectin at 17 ng/mL and vascular endothelial-cadherin precursor at 30 ng/mL) and several tissue leakage products, thus providing a powerful orthogonal separation step in the proteomics workflow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据