4.6 Article

Role of Kir4.1 channels in growth control of glia

期刊

GLIA
卷 55, 期 16, 页码 1668-1679

出版社

WILEY-LISS
DOI: 10.1002/glia.20574

关键词

potassium channel; resting membrane potential; proliferation; glioma cells

资金

  1. NINDS NIH HHS [R01 NS31234, R01 NS031234-14A1, R01 NS031234-13, R01 NS031234] Funding Source: Medline

向作者/读者索取更多资源

The inwardly rectifying potassium channel Kir4.1 is widely expressed by astrocytes throughout the brain. Kir4.1 channels are absent in immature, proliferating glial cells. The progressive expression of Kir4.1 correlates with astrocyte differentiation and is characterized by the establishment of a negative membrane potential (> -70 mV) and an exit from the cell cycle. Despite some correlative evidence, a mechanistic interdependence between Kir4.1 expression, membrane hyperpolarization, and control of cell proliferation has not been demonstrated. To address this question, we used astrocyte-derived tumors (glioma) that lack functional Kir4.1 channels, and generated two glioma cell lines that stably express either AcGFP-tagged Kir4.1 channels or AcGFP vectors only. Kir4.1 expression confers the same K+ conductance to glioma membranes and a similar responsiveness to changes in [K+](o) that characterizes differentiated astrocytes. Kir4.1 expression was sufficient to move the resting potential of gliomas from -50 to -80 mV Importantly, Kir4.1 expression impaired cell growth by shifting a significant number of cells from the G2/M phase into the quiescent G0/G1 stage of the cell cycle. Furthermore, these effects could be nullified entirely if Kir4.1 channels were either pharmacologically inhibited by 100 mu M BaCl2 or if cells were chronically depolarized by 20 mM KCl to the membrane voltage of growth competent glioma cells. These studies therefore demonstrate directly that Kir4.1 causes a membrane hyperpolarization that is sufficient to account for the growth attenuation, which in turn induces cell maturation characterized by a shift of the cells from G2/M into G0/G1. (C) 2007 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据