4.3 Article

Avoiding another mistake: Error and posterror neural activity associated with adaptive posterror behavior change

期刊

出版社

SPRINGER
DOI: 10.3758/CABN.7.4.317

关键词

-

向作者/读者索取更多资源

The magnitude of posterior medial frontal cortex (pMFC) activity during commission of an error has been shown to relate to adaptive posterror changes in response behavior on the trial immediately following. In the present article, we examined neural activity during and after error commission to identify its relationship to sustained posterror behavior changes that led to performance improvements several trials into the future. The standard task required participants to inhibit a prepotent motor response during infrequent lure trials, which were randomly interspersed among numerous go trials. Posterror behavior was manipulated by introducing a dynamic condition, in which an error on a lure trial ensured that the next lure would appear within two to seven go trials. Behavioral data indicated significantly higher levels of posterror slowing and accuracy during the dynamic condition, as well as fewer consecutive lure errors. Bilateral prefrontal cortex (PFC) and pMFC activity during the posterror period, but not during commission of the error itself, was associated with increased posterror slowing. Activity within two of these regions (right PFC and pMFC) also predicted success on the next lure trial. The findings support a relationship between pMFC/PFC activity and adaptive posterror behavior change, and the discrepancy between these findings and those of previous studies-in the present study, this relationship was detected during the posterior period rather than during commission of the error itself-may have resulted from the requirements of the present task. Implications of this discrepancy for the flexibility of cognitive control are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据