4.4 Article

Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa

期刊

JOURNAL OF BACTERIOLOGY
卷 189, 期 23, 页码 8503-8509

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00769-07

关键词

-

向作者/读者索取更多资源

The roles of lipopolysaccharides (LPS) and extracellular polymers (ECP) on the adhesion of Pseudomonas aeruginosa PAO1 (expresses the A-band and B-band of 0 antigen) and AK1401 (expresses the A-band but not the B-band) to silicon were investigated with atomic force microscopy (AFM) and related to biopolymer physical properties. Measurement of macroscopic properties showed that strain AK1401 is more negatively charged and slightly more hydrophobic than strain PAO1 is. Microscopic AFM investigations of individual bacteria showed differences in how the biopolymers interacted with silicon. PAO1 showed larger decay lengths in AFM approach cycles, suggesting that the longer polymers on PAO1 caused greater steric repulsion with the AFM tip. For both bacterial strains, the long-range interactions we observed (hundreds of nanometers) were inconsistent with the small sizes of LPS, suggesting that they were also influenced by ECP, especially polysaccharides. The AFM retraction profiles provide information on the adhesion strength of the biopolymers to silicon (F-adh). For AK1401, the adhesion forces were only slightly lower (F-adh = 0.51 nN compared to 0.56 nN for PAO1), but the adhesion events were concentrated over shorter distances. More than 90% of adhesion events for AK1401 were at distances of <600 nm, while >50% of adhesion events for PAO1 were at distances of >600 nm. The sizes of the observed molecules suggest that the adhesion of P. aeruginosa to silicon was controlled by ECP, in addition to LPS. Steric and electrostatic forces each contributed to the interfacial interactions between P. aeruginosa and the silicon surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据