4.6 Article

Elastic and orbital effects on thickness-dependent properties of manganite thin films

期刊

PHYSICAL REVIEW B
卷 76, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.224415

关键词

-

资金

  1. ICREA Funding Source: Custom

向作者/读者索取更多资源

We report on the structural and magnetic characterization of (110) and (001) La2/3Ca1/3MnO3 (LCMO) epitaxial thin films simultaneously grown on (110) and (001)SrTiO3 substrates, with thicknesses t varying between 8 and 150 nm. It is found that while the in-plane interplanar distances of the (001) films are strongly clamped to those of the substrate and the films remain strained up to well above t approximate to 100 nm, the (110) films relax much earlier. Accurate determination of the in-plane and out-of-plane interplanar distances has allowed concluding that for t>20 nm, unit cell volume expansion does not change substantially for (001) films whereas it relaxes towards bulk value for (110) ones. However, in all cases, an abnormal unit cell expansion is observed for t<20 nm. It is observed that the magnetic properties (Curie temperature and saturation magnetization) of the (110) films are significantly improved compared to those of (001) films. These observations, combined with Mn-55-nuclear magnetic resonance data and x-ray photoemission spectroscopy, signal that the depression of the magnetic properties of the more strained (001)LCMO films is not caused by an elastic deformation of the perovskite lattice but rather due to the electronic and chemical phase separation caused by the substrate-induced strain. On the contrary, the thickness dependence of the magnetic properties of the less strained (110)LCMO films are simply described by the elastic deformation of the manganite lattice. We will argue that the different behavior of (001) and (110)LCMO films is a consequence of the dissimilar electronic structure of these interfaces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据