4.4 Article

Principal component analysis of the time- and position-dependent point-spread function of the advanced camera for surveys

期刊

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/524849

关键词

-

向作者/读者索取更多资源

We describe the time- and position-dependent point-spread function (PSF) variation of the wide-field channel (WFC) of the Advanced Camera for Surveys (ACS) with the principal component analysis (PCA) technique. The time-dependent change is caused by the temporal variation of the HST focus, whereas the position-dependent PSF variation in ACS WFC at a given focus is mainly the result of changes in aberrations and charge diffusion across the detector, which appear as position-dependent changes in the elongation of the astigmatic core and blurring of the PSF, respectively. Using > 400 archival images of star cluster fields, we construct an ACS PSF library covering diverse environments of the HST observations (e.g., focus values). We find that interpolation of a small number (similar to 20) of principal components or eigen-PSFs per exposure can robustly reproduce the observed variation of the ellipticity and size of the PSF. Our primary interest in this investigation is the application of this PSF library to precision weak-lensing analyses, where accurate knowledge of the instrument's PSF is crucial. However, the high fidelity of the model judged from the nice agreement with observed PSFs suggests that the model is potentially also useful in other applications, such as crowded field stellar photometry, galaxy profile fitting, AGN studies, etc., which similarly demand a fair knowledge of the PSFs at objects' locations. Our PSF models, applicable to any WFC image rectified with the Lanczos3 kernel, are publicly available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据