4.4 Article

Nitric oxide activates leak K+ currents in the presumed cholinergic neuron of basal Forebrain

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 98, 期 6, 页码 3397-3410

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00536.2007

关键词

-

向作者/读者索取更多资源

Learning and memory are critically dependent on basal forebrain cholinergic (BFC) neuron excitability, which is modulated profoundly by leak K+ channels. Many neuro-modulators closing leak K+ channels have been reported, whereas their endogenous opener remained unknown. We here demonstrate that nitric oxide (NO) can be the endogenous opener of leak K+ channels in the presumed BFC neurons. Bath application of 1 mM S-nitroso-N-acetylpenicillamine (SNAP), an NO donor, induced a long-lasting hyperpolarization, which was often interrupted by a transient depolarization. Soluble guanylyl cyclase inhibitors prevented SNAP from inducing hyperpolarization but allowed SNAP to cause depolarization, whereas bath application of 0.2 mM 8-bromo-guanosine-3', 5' -cyclomonophosphate (8-Br-cGMP) induced a similar long-lasting hyperpolarization alone. These observations indicate that the SNAP-induced hyperpolarization and depolarization are mediated by the cGMP-dependent and -independent processes, respectively. When examined with the ramp command pulse applied at -70 mV under the voltage-clamp condition, 8-Br-cGMP application induced the outward current that reversed at K+ equilibrium potential (E-K) and displayed Goldman-Hodgkin-Katz rectification, indicating the involvement of voltage-independent K+ current. By contrast, SNAP application in the presumed BFC neurons either dialyzed with the GTP-free internal solution or in the presence of 10 mu M Rp-8-bromo-beta-phenyl-1, N-2-ethenoguanosine 3',5' -cyclic monophosphorothioate sodium salt, a protein kinase G (PKG) inhibitor, induced the inward current that reversed at potentials much more negative than E K and close to the reversal potential of Na+ -K+ pump current. These observations strongly suggest that NO activates leak K+ channels through cGMP-PKG-dependent pathway to markedly decrease the excitability in BFC neurons, while NO simultaneously causes depolarization by the inhibition of Na+ -K+ pump through ATP depletion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据