4.7 Review

ERADicate ER stress or die trying

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 9, 期 12, 页码 2373-2387

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2007.1817

关键词

-

资金

  1. NIGMS NIH HHS [GM55848] Funding Source: Medline

向作者/读者索取更多资源

Stress within the endoplasmic reticulum (ER) induces a sophisticated network of pathways termed the unfolded protein response (UPR), which is mediated through the ER transmembrane sensors PERK, ATF6, and IRE1. The UPR coordinates the temporary downregulation of protein translation, the upregulation of ER chaperones and folding machinery, and the enhanced expression of components necessary for ER-associated degradation (ERAD) essential for decreasing ER stress by clearing terminally misfolded proteins from the ER. Repetitive but futile folding attempts not only prolong ER stress but can also result in reactive oxygen species (ROS) generation, both of which may result in cell death. Additional mechanisms for decreasing stress and the protein load in the ER have been recently revealed. They include a newly identified function of IRE1 in degradation of select secretory protein mRNAs, a preemptive quality control responsible for averting translocation of select secretory proteins into the ER, upregulation of forward trafficking to allow misfolded proteins with intact exit signals to exit the ER, and upregulation of autophagy. The saturation or failure of some or all of these mechanisms can result in cell death and disease, including diabetes and a number of late-onset neurologic diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据