4.6 Article

Dietary supplementation of short-chdin fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system

期刊

JOURNAL OF NUTRITION
卷 137, 期 12, 页码 2763-2768

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jn/137.12.2763

关键词

-

向作者/读者索取更多资源

Supplementation of prebiotic compounds, including short-chain fructooligosaccharides (scFOS) has been shown to confer benefits on nutrient utilization, growth, and disease resistance of various animal species through improved gastrointestinal (GI) microbiota. However, potential uses of prebiotics for shrimp have not been defined. A 6-wk feeding trial was conducted in a recirculating system to determine the effects of scFOS supplementation on growth performance, immune functions, and GI microbiota composition of Pacific white shrimp (Litopenaeus vannamei). scFOS was supplemented in a nutritionally complete diet (35% crude protein) at 0.025, 0.0500, 0.075, 0.100, 0.200, 0.400, and 0.800% by weight. After 6 wk of feeding, shrimp fed 0, 0.1, and 0.8% scFOS were sampled for assays of immune function and GI microbiota. Dietary supplementation of scFOS did not improve weight gain, feed conversion ratio, or survival of shrimp. Denaturing gradient gel electrophoresis analysis suggested the intestinal tract microbial community from shrimp fed the basal diet was different from that of shrimp fed the scFOS diets [similarity coefficient (SC) = 74.9%)], although the intestinal tract microbial community from shrimp fed the scFOS-supplemented diets was very similar (SC = 92.3%). All the bacterial species contributing to the GI microbial differences were identified, although most of them are uncultured species. Both total hemocyte count and hemocyte respiratory burst increased (P < 0.05) by incremental dietary supplementation of scFOS (0-0.8%). This study is the first to our knowledge to show that dietary scFOS can selectively support growth of certain bacterial species in the GI tract of shrimp and enhance immunity, which may facilitate development of alternative strategies, including novel probiotics and synbiotics, for shrimp growth and health management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据