4.2 Article

Habitat factors influencing distributions of Anaplasma phagocytophilum and Ehrlichia chaffeensis in the Mississippi alluvial valley

期刊

VECTOR-BORNE AND ZOONOTIC DISEASES
卷 7, 期 4, 页码 563-573

出版社

MARY ANN LIEBERT INC
DOI: 10.1089/vbz.2007.0116

关键词

Anaplasma phagocytophilum; Ehrlichia chaffeensis; tick-borne disease; forest fragmentation; landscape ecology; geographic information systems; Mississippi alluvial valley

资金

  1. NIAID NIH HHS [1R03 AI062944, R03 AI062944, R03 AI062944-03] Funding Source: Medline

向作者/读者索取更多资源

Human monocytotropic ehrlichiosis (HME), caused by the bacterium Ehrlichia chaffeensis, and human granulocytic anaplasmosis (HGA), caused by the bacterium Anaplasma phagocytophilum, are two emerging tick-borne zoonoses of concern. Factors influencing geographic distributions of these pathogens are not fully understood, especially at varying spatial extents (regional versus landscape) and resolutions (counties versus smaller land units). We used logistic regression to compare influences of physical environment, land cover composition, and landscape heterogeneity on distributions of A. phagocytophilum and E. chaffeensis at multiple spatial extents. Pathogen presence or absence was determined from white-tailed deer (Odocoileus virginianus) serum samples collected from 1981 to 2005. Ecological predictor variables were derived from spatial datasets that represented deer density, elevation, land cover, normalized difference vegetation index (NDVI), hydrology, and soil moisture. We used three strategies (a priori, exploratory, and spatial extent) to develop models. Best fitting models were applied within a geographic information system to create predictive probability surfaces for each bacterium. Ecological predictor variables generally resulted in better fitting models for E. chaffeensis than A. phagocytophilum (90.5% and 68% sensitivity, respectively), possibly as a result of differences in the natural histories of tick vectors. Although alternative model development strategies produced different models, in all cases bacteria presence or absence was affected by a combination of soil moisture or flooding variables (thought to affect primarily tick vectors) and forest cover or NDVI variables (thought to affect primarily mammalian hosts). This research demonstrates the potential for modeling the distributions of microscopic tick-borne pathogens using coarse regional datasets and emphasizes the importance of forest cover and flooding as environmental constraints, as well as the importance of considering ecological variables at multiple spatial extents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据