4.6 Article

Impact of metal gates on remote phonon scattering in titanium nitride/hafnium dioxide n-channel metal-oxide-semiconductor field effect transistors-low temperature electron mobility study

期刊

JOURNAL OF APPLIED PHYSICS
卷 102, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2821712

关键词

-

向作者/读者索取更多资源

We report low temperature (40-300 K) electron mobility measurements on aggressively scaled [equivalent oxide thickness (EOT)=1 nm] n-channel metal-oxide-semiconductor field effect transistors (nMOSFETs) with HfO2 gate dielectrics and metal gate electrodes (TiN). A comparison is made with conventional nMOSFETs containing HfO2 with polycrystalline Si (poly-Si) gate electrodes. No substantial change in the temperature acceleration factor is observed when poly-Si is replaced with a metal gate, showing that soft optical phonons are not significantly screened by metal gates. A qualitative argument based on an analogy between remote phonon scattering and high-resolution electron energy-loss spectroscopy (HREELS) is provided to explain the underlying physics of the observed phenomenon. It is also shown that soft optical phonon scattering is strongly damped by thin SiO2 interface layers, such that room temperature electron mobility values at EOT=1 nm become competitive with values measured in nMOSFETs with SiON gate dielectrics used in current high performance processors. (c) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据