4.5 Article

Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia

期刊

COGNITIVE SYSTEMS RESEARCH
卷 8, 期 4, 页码 262-281

出版社

ELSEVIER
DOI: 10.1016/j.cogsys.2007.02.001

关键词

basal ganglia; prefrontal cortex; dopamine phasic signal; actor-critic architecture; artificial lesioning

向作者/读者索取更多资源

Delayed-response tasks (DRTs) have been used to assess working memory (WM) processes in human and nonhuman animals. Experiments have shown that the basal ganglia (BG) and dorsolateral prefrontal cortex (DLPFC) subserve DRT performance. Here, we report the results of simulation studies of a systems-level model of DRT performance. The model was trained using the temporal difference (TD) algorithm and uses an actor-critic architecture. The matrisomes of the BG represent the actor and the striosomes represent the critic. Unlike existing models, we hypothesize that the BG subserve the selection of both motor-and cognitive-related information in these tasks. We also assume that the learning of both processes is based on reward presentation. A novel feature of the model is the incorporation of delay-active neurons in the matrisomes, in addition to DLPFC. Another novel feature of the model is the subdivision of the matrisomal neurons into segregated winner-take-all (WTA) networks consisting of delay-versus transiently-active units. Our simulation model proposes a new neural mechanism to account for the occurrence of perseverative responses in WM tasks in striatal-, as well as in prefrontal damaged subjects. Simulation results also show that the model both accounts for the phenomenon of time shifting of dopamine phasic signals and the effects of partial reinforcement and reward magnitude on WM performance at both behavioral and neural levels. Our simulation results also found that the TD algorithm can subserve learning in delayed-reversal tasks. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据