4.5 Article

Comparative height-crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo

期刊

AMERICAN JOURNAL OF BOTANY
卷 94, 期 12, 页码 1951-1962

出版社

WILEY
DOI: 10.3732/ajb.94.12.1951

关键词

adaptation; comparative studies; standardized major axis regression; tree adult stature; tree architecture; wood density

向作者/读者索取更多资源

In rainforests, trunk size, strength, crown position, and geometry of a tree affect light interception and the likelihood of mechanical failure. Allometric relationships of tree diameter, wood density, and crown architecture vs. height are described for a diverse range of rainforest trees in Brunei, northern Borneo. The understory species follow a geometric model in their diameter-height relationship (slope, beta = 1.08), while the stress-elasticity models prevail (beta = 1.27-1.61) for the midcanopy and canopy/emergent species. These relationships changed with ontogeny, especially for the understory species. Within species, the tree stability safety factor (SSF) and relative crown width decreased exponentially with increasing tree height. These trends failed to emerge in across-species comparisons and were reversed at a common (low) height. Across species, the relative crown depth decreased with maximum potential height and was indistinguishable at a common (low) height. Crown architectural traits influence SSF more than structural property of wood density. These findings emphasize the importance of applying a common reference size in comparative studies and suggest that forest trees (especially the understory group) may adapt to low light by having deeper rather than wider crowns due to an efficient distribution and geometry of their foliage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据