4.6 Article

Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain

期刊

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
卷 27, 期 12, 页码 1908-1918

出版社

SAGE PUBLICATIONS INC
DOI: 10.1038/sj.jcbfm.9600491

关键词

cerebral blood flow; endothelium-dependent vasodilation; functional hyperemia; hydroethidine; laser-Doppler flowmetry

资金

  1. NHLBI NIH HHS [HL18974] Funding Source: Medline
  2. NINDS NIH HHS [NS38252] Funding Source: Medline

向作者/读者索取更多资源

Aging is associated with cerebrovascular dysregulation, which may underlie the increased susceptibility to ischemic stroke and vascular cognitive impairment occurring in the elder individuals. Although it has long been known that oxidative stress is responsible for the cerebrovascular dysfunction, the enzymatic system(s) generating the reactive oxygen species (ROS) have not been identified. In this study, we investigated whether the superoxide-producing enzyme NADPH oxidase is involved in alterations of neurovascular regulation induced by aging. Cerebral blood flow (CBF) was recorded by laser-Doppler flowmetry in anesthetized C57BL/6 mice equipped with a cranial window (age = 3, 12, and 24 months). In 12- month-old mice, the CBF increases evoked by whisker stimulation or by the endothelium-dependent vasodilators acetylcholine and bradykinin were attenuated by 42, 36, and 53%, respectively (P < 0.05). In contrast, responses to the nitric oxide donor S-nitroso-D-penicillamine or adenosine were not attenuated (P > 0.05). These cerebrovascular effects were associated with increased production of ROS in neurons and cerebral blood vessels, assessed by hydroethidine microfluorography. The cerebrovascular impairment present in 12-month-old mice was reversed by the ROS scavenger Mn (III) tetrakis (4-benzoic acid) porphyrin chloride or by the NADPH oxidase peptide inhibitor gp91ds-tat, and was not observed in mice lacking the Nox2 subunit of NADPH oxidase. These findings establish Nox2 as a critical source of the neurovascular oxidative stress mediating the deleterious cerebrovascular effects associated with increasing age.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据