4.2 Article

The 1-D hindered rotor approximation

期刊

THEORETICAL CHEMISTRY ACCOUNTS
卷 118, 期 5-6, 页码 881-898

出版社

SPRINGER
DOI: 10.1007/s00214-007-0376-5

关键词

-

向作者/读者索取更多资源

We offer an overview of the popular one- dimensional (1-D) hindered rotor model that is often used for quantum mechanical treatment of internal rotation. This model is put in context with other methods used for treating anharmonic motions. The 1-D hindered rotor scheme is general for tops of any symmetry and has been used to provide accurate treatment of hindered rotors in a wide range of systems. One obstacle preventing wider use of the model is its lack of incorporation into common electronic structure codes. We have developed an algorithm for consistently treating all tops in a molecule, and we present simple codes which interface with electronic structure codes to provide thermochemical properties (S, C-p , H) of individual species and reactions that have been corrected for internal rotations. Finally, we use this approach to give sensible advice about how the model can be used best. We show that dramatic changes in the reduced moment of inertia do not necessarily cause comparable changes in the properties of individual hindered rotors. We demonstrate that the rotational hindrance potential can be accurately determined using relatively coarse step sizes. Finally, we show that internal rotation in transition states can be treated using a frozen transition state approximation at a significant computational savings. We also discuss the relationship between calculated properties of hindered rotors and the choice of method and basis set used.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据