4.5 Article

Transgenic overexpression of pregnancy-associated plasma protein-A increases the somatic growth and skeletal muscle mass in mice

期刊

ENDOCRINOLOGY
卷 148, 期 12, 页码 6176-6185

出版社

ENDOCRINE SOC
DOI: 10.1210/en.2007-0274

关键词

-

向作者/读者索取更多资源

Although IGFs are indispensable to skeletal muscle development, little information is available regarding the mechanisms regulating the local action of IGFs in skeletal muscle tissues. Here we tested the hypothesis that pregnancy-associated plasma protein-A (PAPP-A), a member of the metalloproteinase superfamily, promotes skeletal muscle formation in vivo through degrading IGF binding proteins (IGFBPs), which increases the bioavailability of IGFs. Expression of PAPP-A is significantly increased in muscle five days after muscle injury in mice. Targeted overexpression of PAPP-A using a muscle-specific promoter significantly increased the prenatal/postnatal growth, skeletal muscle weight, and muscle fiber area in mice. These anabolic effects were reproduced using F2/F3 progeny. Free IGF-I concentration was severalfold higher in the conditionedmedium(CM) of ex vivo cultured muscle from the transgenic mice, compared with the wildtype type littermate muscle. Accordingly, the proliferation of C2C12 myoblasts was significantly increased in the presence of CM from cultured skeletal muscle of the transgenic mice, compared with the controls. This observed increase in myoblast proliferation was abolished on addition of noncleavable IGFBP-4 peptide, which reduced free IGF-I concentration back to the basal level of the wild-type CM. Furthermore, proliferation and differentiation of C2C12 myoblasts was increased by transient overexpression of proteolytically active PAPP-A but not by inactive mutant PAPP-A (E483/A). Collectively, we identified PAPP- A as a novel regulator of prenatal/postnatal growth and skeletal muscle formation in vivo. Moreover, our studies provide the first experimental evidence that IGFBP degradation is a key determinant in modulating the local action of IGFs in muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据