4.7 Article

Desorption from interstellar ices

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2007.12402.x

关键词

astrochemistry; molecular processes; stars : formation; ISM : abundances; dust, extinction; ISM : molecules

向作者/读者索取更多资源

The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms: desorption resulting from H-2 formation on grains, direct cosmic ray heating and cosmic ray-induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species selectivity of the desorption and the assumed threshold adsorption energies, E-t), all the three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important. Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes, we find that desorption by H-2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions - rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L16 89B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据